《数学教育心理学》是我们大学要学的一个科目,但读大学时,没有经过教学,没有实际的操作,所以当时读书时学得没有不好,现在,随着自己教学遇到越来越多的问题,越来越感觉自己的心理学知识太薄弱,徐老师给我们看的书中,恰好有这本书,所以,现在,我又拿起这本书,细细阅读,虽然,还是感觉不是很能看懂,觉得很高深,但结合教学实际,还是有一些体会。
(3)变式:该书指出变式可以区分为概念性变式和过程性变式两类。
概念性变式有两种:一种是我们熟悉的,即符合概念定义但外表与标准式不同,如底边没在水平方向的等腰三角形;另一种即常说的反例,即外表相似但不符合概念定义,如有某两条边形成凹口的多边形(几何学里的多边形只指凸多边形)。
过程性变式该书没给出严格定义,我理解它是指得出某概念或某原理的多种数学过程。综合该书第118-119页和第166-167页内容,过程性变式无非是化一为多和化多为一两种:
化一为多:得出或表达概念、原理的方法是多样化的。如导出方程概念时,表示未知量的可分别是黑框、空框、任意拼音字母、最后是x,它们等价;又如从一般四边形变到正方形可以有多条途径,先变成菱形或先变成矩形等。
化多为一:把多样化的数学知识化归为一。如学了简易方程之后,争取把过去那些用算术方法做的题目化为用方程方法来做。又如弄懂只要会做分数题,百分数、比和比例之类的题就不难。
运用过程性变式的意义在两方面:一方面可让学生通过多种过程获得概念或原理,从而达到更好的理解;另一方面让学生对多样化的数学知识融会贯通,形成良好的知识结构,记忆深、好应用。
(4)综合:让一道题里综合多个数学知识点。
(5)实践:设置符合实际生活情境的问题。
读书过程中,我们慢慢地就提高了自己的思想,充实了自己,即使培训结束,我都要坚持读书。